Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Toxins (Basel) ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755957

RESUMO

Dialysis treatment has improved the survival of patients with kidney failure. However, the hospitalization and mortality rates remain alarmingly high, primarily due to incomplete uremic toxin elimination. High-volume hemodiafiltration (HDF) has emerged as a promising approach that significantly improves patient outcomes by effectively eliminating medium and large uremic toxins, which explains its increasing adoption, particularly in Europe and Japan. Interest in this therapy has grown following the findings of the recently published CONVINCE study, as well as the need to understand the mechanisms behind the benefits. This comprehensive review aims to enhance the scientific understanding by explaining the underlying physiological mechanisms that contribute to the positive effects of HDF in terms of short-term benefits, like hemodynamic tolerance and cardiovascular disease. Additionally, it explores the rationale behind the medium-term clinical benefits, including phosphorus removal, the modulation of inflammation and oxidative stress, anemia management, immune response modulation, nutritional effects, the mitigation of bone disorders, neuropathy relief, and amyloidosis reduction. This review also analyzes the impact of HDF on patient-reported outcomes and mortality. Considering the importance of applying personalized uremic toxin removal strategies tailored to the unique needs of each patient, high-volume HDF appears to be the most effective treatment to date for patients with renal failure. This justifies the need to prioritize its application in clinical practice, initially focusing on the groups with the greatest potential benefits and subsequently extending its use to a larger number of patients.

2.
Kidney Int Rep ; 7(10): 2176-2185, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35874643

RESUMO

Introduction: The COVID-19 pandemic is a global public health problem. Patients with end-stage renal disease on hemodialysis are at a higher risk of infection and mortality than the general population. Worldwide, a vaccination campaign has been developed that has been shown to reduce severe infections and deaths in the general population. However, there are currently limited data on the clinical efficacy of vaccinations in the hemodialysis population. Methods: A national multicenter observational cohort was performed in Chile to evaluate the clinical efficacy of anti-SARS-CoV-2 vaccination in end-stage renal disease patients on chronic hemodialysis from February 2021 to August 2021. In addition, the BNT162b2 (Pfizer-BioNTech) and CoronaVac (Sinovac) vaccines were evaluated. The efficacy of vaccination in preventing SARS-CoV-2 infection, hospitalizations, and deaths associated with COVID-19 was determined. Results: A total of 12,301 patients were evaluated; 10,615 (86.3%) received a complete vaccination (2 doses), 490 (4.0%) received incomplete vaccination, and 1196 (9.7%) were not vaccinated. During follow-up, 1362 (11.0%) patients developed COVID-19, and 150 died (case fatality rate: 11.0%). The efficacy of the complete vaccination in preventing infection was 18.1% (95% confidence interval [CI]:11.8-23.8%), and prevention of death was 66.0% (95% CI:60.6-70.7%). When comparing both vaccines, BNT162b2 and CoronaVac were effective in reducing infection and deaths associated with COVID-19. Nevertheless, the BNT162b2 vaccine had higher efficacy in preventing infection (42.6% vs. 15.0%) and deaths (90.4% vs. 64.8%) compared to CoronaVac. Conclusion: The results of our study suggest that vaccination against SARS-CoV-2 in patients on chronic hemodialysis was effective in preventing infection and death associated with COVID-19.

3.
Methods Mol Biol ; 2472: 187-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674901

RESUMO

The NOTCH signaling pathway is an evolutionarily conserved family of transmembrane receptors, ligands, and transcription factors. The NOTCH signaling is activated in many biological processes including nephrogenesis, tubulogenesis, and glomerulogenesis, as well as during pathological situations. Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the interaction between membrane-bound Notch receptors and ligands expressed on neighboring cells. In chronic kidney diseases, activation of the canonical NOTCH signaling pathway has been described. The following protocols will allow the direct assessment of Jagged-1/NOTCH signaling activation in biopsies of patients with chronic kidney diseases and in murine experimental models of renal damage.


Assuntos
Receptores Notch , Insuficiência Renal Crônica , Animais , Biópsia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Proteína Jagged-1/genética , Rim/metabolismo , Ligantes , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
4.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215234

RESUMO

Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.

5.
Front Pharmacol ; 12: 674117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938174

RESUMO

Cyclosporine (CsA) and tacrolimus (TAC) are immunosuppressant drugs characterized by a narrow therapeutic range and high pharmacokinetic variability. The effect of polymorphisms in genes related to the metabolism and transport of these drugs, namely CYP3A4, CYP3A5, MDR1 and POR genes, has been evaluated in diverse populations. However, the impact of these polymorphisms on drug disposition is not well established in Latin American populations. Using TaqMan® probes, we determined the allelic frequency of seven variants in CYP3A4, CYP3A5, MDR1 and POR in 139 Chilean renal transplant recipients, of which 89 were treated with CsA and 50 with TAC. We tested associations between variants and trough and/or 2-hour concentrations, normalized by dose (C0/D and C2/D) at specific time points post-transplant. We found that CYP3A5*3/*3 carriers required lower doses of TAC. In TAC treated patients, most CYP3A5*3/*3 carriers presented higher C0/D and a high proportion of patients with C0 levels outside the therapeutic range relative to other genotypes. These results reinforce the value of considering CYP3A5 genotypes alongside therapeutic drug monitoring for TAC treated Chilean kidney recipients.

6.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33775443

RESUMO

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 lymphocytes and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and target organ damage. Studies in mice have shown that IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Preclinical studies on arterial hypertension have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, blocking IL-17A by genetic strategies, or using neutralising antibodies, lowers blood pressure by acting on the vascular wall and tubule sodium transport and reduces damage to target organs. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target in the future.


Assuntos
Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/fisiologia , Animais , Humanos , Camundongos
7.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36166242

RESUMO

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.


Assuntos
Hipertensão , Interleucina-17 , Animais , Anticorpos Neutralizantes , Citocinas , Humanos , Interleucina-17/genética , Camundongos , Sódio
8.
Transpl Infect Dis ; 23(2): e13494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33064917

RESUMO

BACKGROUND: We performed a multicenter study to assess the association between secondary antibody deficiency (immunoglobulin G [IgG] hypogammaglobulinemia combined with low levels of specific antibodies) and development of infection in kidney transplantation. METHODS: We prospectively analyzed 250 adult kidney recipients at four centers. The assessment points were before transplantation and 7 and 30 days after transplantation. The immune parameters were as follows: IgG, IgA, and IgM and complement factors C3 and C4 tested by nephelometry; specific IgG antibodies to cytomegalovirus (CMV) and IgG and IgG2 antibodies to pneumococcal polysaccharide (anti-PPS) determined using enzyme-linked immunosorbent assay. The clinical follow-up period lasted 6 months. The clinical outcomes were CMV disease and recurrent bacterial infections requiring antimicrobial therapy. STATISTICS: Multivariate logistic regression. RESULTS: At day 7, IgG hypogammaglobulinemia (IgG levels < 700 mg/dL) combined with low IgG anti-CMV antibody titers (defined as levels < 10 000 units) was present in 12% of kidney recipients. IgG hypogammaglobulinemia combined with low IgG anti-PPS antibody titers (defined as levels < 10 mg/dL) at 1 month after kidney transplantation were recorded in 16% of patients. At day 7 the combination of IgG hypogammaglobulinemia and low anti-CMV titers was independently associated with the development of CMV disease (odds ratio [OR], 6.95; 95% confidence interval [CI], 1.17-41.31; P = .033). At day 30 after transplantation, the combination of IgG < 700 mg/dL and IgG anti-PPS < 10 mg/dL, was independently associated with recurrent bacterial infection (OR, 5.942; 95% CI, 1.943-18.172; P = .002). CONCLUSION: In a prospective multicenter study, early immunologic monitoring of secondary antibody deficiency proved useful for the identification of kidney recipients who developed severe infection.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Adulto , Citomegalovirus/imunologia , Humanos , Imunoglobulina G , Estudos Prospectivos
9.
FASEB J ; 35(1): e21213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368614

RESUMO

Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Deleção de Genes , Imunidade Celular , Nefropatias/imunologia , Rim/imunologia , Células Th17/imunologia , Animais , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Células Th17/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-32900697

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway participates in the development and progression of DN. Among the different mechanisms involved in JAK/STAT negative regulation, the family of suppressor of cytokine signaling (SOCS) proteins has been proposed as a new target for DN. Our aim was to evaluate the effect of SOCS1 mimetic peptide in a mouse model of obesity and type 2 diabetes (T2D) with progressive DN. RESEARCH DESIGN AND METHODS: Six-week-old BTBR (black and tan brachyuric) mice with the ob/ob (obese/obese) leptin-deficiency mutation were treated for 7 weeks with two different doses of active SOCS1 peptide (MiS1 2 and 4 µg/g body weight), using inactive mutant peptide (Mut 4 µg) and vehicle as control groups. At the end of the study, the animals were sacrificed to obtain blood, urine and kidney tissue for further analysis. RESULTS: Treatment of diabetic mice with active peptide significantly decreased urine albumin to creatinine ratio by up to 50%, reduced renal weight, glomerular and tubulointerstitial damage, and restored podocyte numbers. Kidneys from treated mice exhibited lower inflammatory infiltrate, proinflammatory gene expression and STAT activation. Concomitantly, active peptide administration modulated redox balance markers and reduced lipid peroxidation and cholesterol transporter gene expression in diabetic kidneys. CONCLUSION: Targeting SOCS proteins by mimetic peptides to control JAK/STAT signaling pathway ameliorates albuminuria, morphological renal lesions, inflammation, oxidative stress and lipotoxicity, and could be a therapeutic approach to T2D kidney disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Anti-Inflamatórios , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina
11.
J Clin Med ; 9(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664235

RESUMO

Primary membranous nephropathy is usually caused by antibodies against the podocyte antigen membrane M-type phospholipase A2 receptor (PLA2R). The treatment of membranous nephropathy is not fully satisfactory. The calcineurin inhibitor tacrolimus is used to treat membranous nephropathy, but recurrence upon drug withdrawal is common. TNF superfamily members are key mediators of kidney injury. We have now identified key TNF receptor superfamily members in podocytes and explored the regulation of PLA2R expression and the impact of tacrolimus. Data mining of single cell transcriptomics and glomerular transcriptomics data identified TNFRSF12a/Fn14 as the highest expressed TNF receptor superfamily gene in human membranous nephropathy, and this was confirmed by immunohistochemistry that also identified NFκB activation in membranous nephropathy podocytes. Additionally, glomerular transcriptomics identified PLA2R1 expression as being increased in membranous nephropathy in the parenteral administration of the Fn14 ligand TWEAK increased podocyte PLA2R expression in mice. Furthermore, in cultured human podocytes, TWEAK increased the expression of PLA2R as well as the expression of other genes recently identified by GWAS as linked to membranous nephropathy: NFKB1 and IRF4. Interestingly, IRF4 encodes the FK506-binding protein 52 (FKBP52), a protein associated with tacrolimus. Tacrolimus prevented the increased expression of PLA2R, NFKB1 and IRF4 induced by TWEAK in cultured podocytes. In conclusion, TWEAK upregulates the expression of PLA2R and of other genes linked to membranous nephropathy in podocytes, and this is prevented by tacrolimus. An impact of tacrolimus on the expression of PLA2R and other genes in podocytes may underlie its efficacy in treating the disease as well as the frequent recurrence of nephrotic syndrome upon tacrolimus withdrawal.

12.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545818

RESUMO

Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/química , Albumina Sérica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Sítios de Ligação , Linhagem Celular , Peptídeos Penetradores de Células/farmacologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/diagnóstico por imagem , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Distribuição Aleatória , Distribuição Tecidual , Resultado do Tratamento
13.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471207

RESUMO

Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Nefropatias Diabéticas/metabolismo , Hipoglicemiantes/uso terapêutico , Imunossupressores/uso terapêutico , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/imunologia , Humanos
14.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290082

RESUMO

Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.


Assuntos
Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Tomada de Decisão Clínica , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/terapia , Gerenciamento Clínico , Dislipidemias/sangue , Dislipidemias/complicações , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Glicogênio/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Prognóstico , Transdução de Sinais
15.
Adv Exp Med Biol ; 1227: 81-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32072500

RESUMO

Gremlin is a member of the TGF-ß superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Humanos , Rim/metabolismo , Rim/patologia , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
J Clin Med ; 9(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973092

RESUMO

The absence of optimal treatments for Diabetic Nephropathy (DN) highlights the importance of the search for novel therapeutic targets. The vascular endothelial growth factor receptor 2 (VEGFR2) pathway is activated in experimental and human DN, but the effects of its blockade in experimental models of DN is still controversial. Here, we test the effects of a therapeutic anti-VEGFR2 treatment, using a VEGFR2 kinase inhibitor, on the progression of renal damage in the BTBR ob/ob (leptin deficiency mutation) mice. This experimental diabetic model develops histological characteristics mimicking the key features of advanced human DN. A VEGFR2 pathway-activation blockade using the VEGFR2 kinase inhibitor SU5416, starting after kidney disease development, improves renal function, glomerular damage (mesangial matrix expansion and basement membrane thickening), tubulointerstitial inflammation and tubular atrophy, compared to untreated diabetic mice. The downstream mechanisms involved in these beneficial effects of VEGFR2 blockade include gene expression restoration of podocyte markers and downregulation of renal injury biomarkers and pro-inflammatory mediators. Several ligands can activate VEGFR2, including the canonical ligands VEGFs and GREMLIN. Activation of a GREMLIN/VEGFR2 pathway, but not other ligands, is correlated with renal damage progression in BTBR ob/ob diabetic mice. RNA sequencing analysis of GREMLIN-regulated genes confirm the modulation of proinflammatory genes and related-molecular pathways. Overall, these data show that a GREMLIN/VEGFR2 pathway activation is involved in diabetic kidney disease and could potentially be a novel therapeutic target in this clinical condition.

17.
J Clin Med ; 9(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963845

RESUMO

Chronic kidney disease has become a major medical issue in recent years due to its high prevalence worldwide, its association with premature mortality, and its social and economic implications. A number of patients gradually progress to end-stage renal disease (ESRD), requiring then dialysis and kidney transplantation. Currently, approximately 40% of patients with diabetes develop kidney disease, making it the most prevalent cause of ESRD. Thus, more effective therapies for diabetic nephropathy are needed. In preclinical studies of diabetes, anti-inflammatory therapeutic strategies have been used to protect the kidneys. Recent evidence supports that immune cells play an active role in the pathogenesis of diabetic nephropathy. Th17 immune cells and their effector cytokine IL-17A have recently emerged as promising targets in several clinical conditions, including renal diseases. Here, we review current knowledge regarding the involvement of Th17/IL-17A in the genesis of diabetic renal injury, as well as the rationale behind targeting IL-17A as an additional therapy in patients with diabetic nephropathy.

18.
Front Pharmacol ; 10: 1015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572188

RESUMO

Hypertension is now considered as an inflammatory disease, and the kidney is a key end-organ target. Experimental and clinical studies suggest that interleukin 17A (IL-17A) is a promising therapeutic target in immune and chronic inflammatory diseases, including hypertension and kidney disease. Elevated circulating IL-17A levels have been observed in hypertensive patients. Our aim was to investigate whether chronically elevated circulating IL-17A levels could contribute to kidney damage, using a murine model of systemic IL-17A administration. Blood pressure increased after 14 days of IL-17A infusion in mice when compared with that in control mice, and this was associated to kidney infiltration by inflammatory cells, including CD3+ and CD4+ lymphocytes and neutrophils. Moreover, proinflammatory factors and inflammatory-related intracellular mechanisms were upregulated in kidneys from IL-17A-infused mice. In line with these findings, in the model of angiotensin II infusion in mice, IL-17A blockade, using an anti-IL17A neutralizing antibody, reduced kidney inflammatory cell infiltrates and chemokine overexpression. In kidney biopsies from patients with hypertensive nephrosclerosis, IL-17A positive cells, mainly Th17 and γδ T lymphocytes, were found. Overall, the results support a pathogenic role of IL-17A in hypertensive kidney disease-associated inflammation. Therapeutic approaches targeting this cytokine should be explored to prevent hypertension-induced kidney injury.

19.
Sci Rep ; 9(1): 6867, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053735

RESUMO

Gremlin renal overexpression has been reported in diabetic nephropathy, pauci-immune crescentic glomerulonephritis and chronic allograft nephropathy and has been implicated in the pathophysiology of the progression of renal damage. However, it is unknown whether urinary Gremlin can be associated with renal functional status, renal biopsy findings and outcome. To examine these associations we studied 20 patients with ANCA+ renal vasculitis and very high urinary Gremlin (354 ± 76 ug/gCr), 86 patients with other glomerular diseases and moderately elevated urinary Gremlin (83 ± 14 ug/gCr) and 11 healthy controls (urinary Gremlin 11.3 ± 2.4 ug/gCr). Urinary Gremlin was significantly correlated with renal expression of Gremlin (r = 0.64, p = 0.013) observed in cellular glomerular crescents, tubular epithelial cells and interstitial inflammatory cells. Moreover, urinary Gremlin levels were correlated with the number of glomerular crescents (r = 0.53; p < 0.001), renal CD68 positive cells (r = 0.71; p < 0.005), tubulointerstitial fibrosis (r = 0.50; p < 0.05), and serum creatinine levels (r = 0.60; p < 0.001). Interestingly, Gremlin expression was colocalized with CD68, CD163 (monocyte/macrophage markers) and CCL18 positive cells. ROC curve analysis showed that the cutoff value of urinary Gremlin in glomerular diseases as 43 ug/gCr with 72% of sensitivity and 100% of specificity [AUC: 0.96 (CI 95% 0.92-0.99] (p < 0.001). For ANCA+ renal vasculitis the value of urinary Gremlin of 241 ug/gCr had 55% of sensitivity and 100% of specificity [AUC: 0.81 (CI 95% 0.68-0.94) (p < 0.001]. Based on these results we propose that urinary Gremlin represents a non-invasive biomarker in ANCA+ renal vasculitis, and suggest a role of Gremlin in the formation of crescents.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/urina , Peptídeos e Proteínas de Sinalização Intercelular/urina , Glomérulos Renais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Glomerulonefrite/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Kidney Int ; 95(6): 1418-1432, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982673

RESUMO

Diabetic nephropathy (DN) is one of the most common complications of diabetes, and currently the first end-stage renal disease worldwide. New strategies to treat DN using agents that target inflammatory pathways have attracted special interest. Recent pieces of evidences suggest a promising effect of IL-17A, the Th17 effector cytokine. Among experimental DN models, mouse strain BTBR ob/ob (leptin deficiency mutation) develops histological features similar to human DN, which means an opportunity to study mechanisms and novel therapies aimed at DN regression. We found that BTBR ob/ob mice presented renal activation of the factors controlling Th17 differentiation. The presence of IL-17A-expressing cells, mainly CD4+ and γδ lymphocytes, was associated with upregulation of proinflammatory factors, macrophage infiltration and the beginning of renal damage. To study IL-17A involvement in experimental DN pathogenesis, treatment with an IL-17A neutralizing antibody was carried out starting when the renal damage had already appeared. IL-17A blockade ameliorated renal dysfunction and disease progression in BTBR ob/ob mice. These beneficial effects correlated to podocyte number restoration and inhibition of NF-κB/proinflammatory factors linked to a decrease in renal inflammatory-cell infiltration. These data demonstrate that IL-17A takes part in diabetes-mediated renal damage and could be a promising therapeutic target to improve DN.


Assuntos
Albuminúria/tratamento farmacológico , Anticorpos Neutralizantes/administração & dosagem , Nefropatias Diabéticas/tratamento farmacológico , Interleucina-17/antagonistas & inibidores , Albuminúria/genética , Albuminúria/imunologia , Albuminúria/patologia , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/urina , Progressão da Doença , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Leptina/genética , Masculino , Camundongos , Camundongos Transgênicos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...